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Bridging the Gaps in the Analytical Procedure
with Bayesian Statistics

The ICH-Q2 has stated that the objective of validation of an
analytical procedure is to demonstrate that it is suitable for
its intended purpose, yet it — as well as the ICH-Qu4 — fails to
clearly define the actual aim of analytical procedure, leading
to misunderstanding and confusion. Bruno Boulanger, Ph.D.,
Global Head Statistics and Data Science at Pharmalex, discusses
how Bayesian statistics and interpretation bridge the gaps in the
guidelines.

In early 2022, ICH released two important guidelines for
comments: ICH-Q2 “Validation of Analytical Procedures” and
ICH-Qi4 “Analytical procedure development”, both of which are
closely interconnected through the concept of the Analytical Target
Profile (ATP), which is used to assess the quality of results generated
by analytical methods. The ATP and ICH-Q14 are intentionally more
aligned with the Quality-by-Design (QbD) ICH-Q8 document on
process development, qualification and control. This introduces the
concept of QbD applied to analytical procedures (AQbD).

But, as opposed to ICH-Q8 that starts with the target product
profile (TPP) or the properties that a product and its related process
should achieve, both ICH-Q2 and Q14 miss the central point that
applies to all analytical procedures: defining what is a good fit-
for-purpose measurement or reportable value. The fact that the
actual aim of analytical procedure is not clearly defined causes
misunderstanding and confusion about various concepts such as
accuracy, linearity and range.

Bayesian statistics and interpretation address these mis-
understandings, helping to bridge the gaps that exist in these two
guidelines.

Uncertainty of Measurement

The ICH-Q2 (R1) describes the linearity of an analytical procedure
as “its ability (within a given range) to obtain test results which are
directly proportional to the concentration (amount) of analyte in the
sample”! The idea is that by increasing the quantity or the potency,
the result will be proportional to the increase. Trust in the result
during routine use of a validated method is the concept of uncertainty
of a measurement - a concept routed in Bayesian statistical theory.
Applying Bayesian statistics allows the user to take results obtained
during the validation of the analytical procedure and predict the
uncertainty around any future result.

In pharmaceutical manufacturing, it is this concept of uncertainty,
or Target Measurement Uncertainty, that allows the user to determine
with a high probability (for example 95%) that the true value of the
batch or sample is within a pre-specified quality range. So, if an
analytical procedure is used to release a batch of a drug product and
the specification limits are that it must fall within +-2mg, then the
uncertainty associated with a result should be much smaller than the
+-2mg in order to keep the risk acceptable. (See figure 1). In keeping
with Six Sigma thinking, the rule of thumb is that TMU should not be
greater than one sixth of the specifications of the product to reduce
the risk of making a wrong decision.

Going back to the concept of AQbD, elements of which are employed
in the Q14, the point is to be sure that for any future test the product will
be within specifications. However, what is missing from the Q14 and
the Q2 guidelines is they don’t define what the specifications on the
uncertainty should be in relation to the quality of the product, which
means that the fit-for-purpose concept is not explicitly defined.

The importance of this has been underscored by the International
Organization for Standardization, which states in its standard
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ISO 21748: “Without quantitative assessments of uncertainty, it is
impossible to decide whether observed differences between results
reflect more than experimental variability, whether test items
comply with specifications, or whether laws based on limits have
been broken. Without information on uncertainty, there is a risk of
misinterpretation of results.”

The objective of an analytical procedure is to be able to provide
any reportable value close enough to any future unknown quantity
(within a predefined range), with a high probability. Since ICH-Q2
is about validation of analytical procedures, it's important to work
with a known sample to try to determine the accuracy of a result (a
combination of bias and precision). By applying Bayesian theory, the
reviewer uses predictive distribution — the distribution of possible
future values given the results observed in validation — to evaluate
future uncertainty. As long as the uncertainty of future measurement
is small in validation, assuming there is a definition of “small” in the
TPP of the analytical target performance, the analytical procedure
can be accepted. But this is missing in the ICH-Q2.

The issue is different when moving to the routine, where use of
a validated analytical procedure requires trust in the measurement
— unless there is some evidence showing a problem occurred during
the analytical procedure when generating that reportable value.
Therefore, the only way to trust a result during the routine phase on
an unknown sample is by referring to the analytical procedure and
its performance, as assessed during the validation.

Diagnostics and Drug Products in Validation and Routine
Perhaps the clearest example of measurement during the validation
versus routine phases is with diagnostic products. Specifically, diagnostic
tests deal with sensitivity and specificity and are important indicators of
test accuracy. On one hand, sensitivity is the proportion of true positives
versus false negatives in tests of patients with a given condition, while
on the other, specificity is the percentage of true negatives versus false
positives of all subjects who do not have the condition.

The question for diagnostic tests is, how to determine the
probability of an outcome (for example, does the patient have cancer

Because we'll have to analyze an unknown sample!
So its true concentration is unknown.
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or not) given the result is positive. During the validation phase, the
result is based on the known sample, while in the routine it is inverted
to ask what is the probability of the sample being truly positive given
the positive result? This inversion is built on Bayesian theory. During
validation, therefore, the sensitivity and specificity of the device is
tested to demonstrate its performance, while during routine, the
manufacturer needs to prove what is called the predictive positive
value (PPV) and negative predictive value (NPV).

The yes/no measurement scenario, which is standard in
diagnostics, gives the reviewer all the reportable values (Xi) given the
sample is positive. In routine, the reviewer needs to determine where,
with high probability, the true unknown content of the sample will
be, given there is one measurement. A decision needs to be made for
each reportable value. Through the Bayesian theory of uncertainty
in measurement, reviewers can determine the distribution of the
unknown true value with 95% reliability.

Returning to pharmaceutical manufacturing, an analytical
procedure could be used for the release of a batch of drug product
based on its potency or concentration, to assess the stability of
batches, to evaluate the dissolution of tablets, and so on — all with the
purpose of supporting low-risk decision-making about the batch. The
specifications applied to any reportable value will be directly derived
from the specifications of the product or the test as defined in the
TPP. First, though, it is important to define the target measurement
uncertainty or greatest uncertainty allowed over an intended range
of true values to be covered in the future.

During the validation, it's necessary to characterise the
uncertainty based on different levels of concentration. However,
given unknown samples will be used during routine, the bias,
precision and uncertainty will also be unknown.Figures 2 and 3
shows a range between 40 and 800. The reviewer may have a sample
at a concentration of 600, but if they have never carried out validation
at 600 they don't know what the uncertainty is. What they do know
is that between specified concentrations measured during validation
— in this example between 40 and 800 — there is a high probability
that the sample is within the target measurement uncertainty (the
two black horizontal lines in figures 2 and 3). It is only the TMU that
allows the reviewer to know the risk made during a decision in the
routine. So, using Bayesian statistics, the reviewer can say given the
result during validation using the known sample, it is possible to
predict over a range the probability that a future unknown sample
will be within the TMU.

The ICH-Q2 asks manufacturers to prove that different
concentration levels work, but does not show how that is feasible
with unknown future samples. Using Bayesian theory and given
the result from the validation of the known sample it is possible to
say, with a probability of more than 95%, that it will be within the
TMU. The target measurement uncertainty should be the objective
of Q14 and by defining the TMU, or the quality of the measurement
in future, it is possible to connect the objectives of the ICH-Q2 and
Q14, which ultimately should be to support decision-making about
capability of an analytical procedure to provide reliable results.
Unfortunately, ICH-Q14 uses the wording Total Analytical Error
instead of Uncertainty because errors during validation with known
samples are still confused with future uncertainty of a measurement
about an unknown sample. Using Bayesian statistics helps to make
this link.

Bayesian theory helps to bridge the gaps and address the questions
posed by many regulations and guidelines, including the ICH-Q2 and
Q14. Among the problems it helps to solve are ensuring reportable
values can be routinely trusted given the validation results and
helping to define the TMU and be confident it can be achieved
in future results. Certainly, in the case of validation of analytical
procedures and ICH-Q14 analytical procedure development Bayesian
is the best way to address the gaps in understanding and reduce risk
in decision making.
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